酸水解法制备纤维素纳米晶体的研究进展
作者:邹竹帆 杨翔皓 王慧 邹杨 解洪祥 司传领 来源:《中国造纸》2019年第03期
摘要:;基于目前纖维素纳米晶体的制备研究现状,本文综述了酸水解法制备纤维素纳米晶体的研究进展,重点介绍了传统无机酸水解法的影响因素以及其他4种新兴酸水解制备方法,包括可回收的有机酸水解法、绿色环保的固体酸水解法、高效的混合酸水解法、金属盐催化酸水解法。并指出开发金属盐催化剂是酸水解法制备纤维素纳米晶体未来发展的一个重要方向。
关键词:纤维素纳米晶体;酸水解;金属盐;催化剂
中图分类号:TS72 ;;;文献标识码:A ;;;;DOI:10.11980/j.issn.02-508X.2019.03.011 Abstract:;Based on the current research advances,;the preparation progress of cellulose nanocrystals via acid hydrolysis was reviewed,;with the focus on influence factors of traditional inorganic acid hydrolysis method,;and the development of another four new methods in recent years including recoverable organic acid hydrolysis,;environmental-friendly solid acid hydrolysis,;high efficiency mixed acid hydrolysis and metal salt catalyzed acid hydrolysis. Key words:;cellulose nanocrystals;;acid hydrolysis;;metal salt;;catalyst
纤维素是地球上含量最丰富的天然高分子化合物,作为一种重要的可生物降解和可再生的生物质资源,年产量约为1800亿t[1]。因此,充分挖掘纤维素的应用潜能将对推动可再生资源的生态化利用、缓解石化资源紧张所带来的社会发展压力,乃至实现人类的可持续发展都具有重要意义。
纤维素是D-葡萄糖之间按照β-1,4-糖苷键连接的方式连接而成的线型高分子化合物。纤维素大分子的聚集,分子排列比较规整的部分称为结晶区;另一部分的分子链分布松散,排列不规则,称为无定形区[2]。纤维素纳米晶体(CNC)又称纳米微晶纤维素(NCC)、纤维素纳米晶须(CNW)[3],由酸、酶或氧化剂选择性的水解或氧化降解纤维素的无定形区而保留结晶区得到的高度结晶的纳米材料,通常直径小于100 nm,长度在50~2000 nm之间,主要为棒状和球形两种形貌[4]。CNC具有比表面积高、抗张强度大、密度低、膨胀系数小、表面的多羟基结构容易进一步修饰等优异的特性[5],且原料易得、可再生和生物降解。因此,CNC在食品、包装、印刷、生物医药、污水处理、电子器件、油气田开发等多领域均表现出巨大的应用潜能[6-10]。
目前制备CNC的方法较多,如酸水解法(具体原理见图1)、酶水解法、氧化降解法、离子液体法等[12]。此外,还有Novo L等人[13]最新开发的亚临界水解法,美国过程公司开发的
龙源期刊网 http://www.qikan.com.cn
AVAP法等[14],各方法的优缺点如表1所示。其中,酸水解法是目前制备CNC最主流的方法。
1 无机酸水解法 1.1 无机酸水解法分类
硫酸水解法是无机酸水解法中使用最普遍的方法。1952年,Ranby等人[15]采用硫酸水解法制备出宽5~10 nm、长50~60 nm的CNC悬浮液,随后硫酸水解法得到广泛的应用。较常用的硫酸水解法工艺是采用%的硫酸在45℃条件下水解纤维素原料45 min,得到尺寸分布均一的棒状CNC,得率在15%~30%之间,粒径约为5~20 nm,长度约为170~500 nm[16]。硫酸水解制备的CNC具有与天然纤维素相同的纤维素I型结晶结构[17]。硫酸水解得到的CNC通常以稳定悬浮液的形式存在,但是干燥后非常容易产生聚集[18]。Peng等人[19]通过比较冷冻干燥、超临界干燥和喷雾干燥3种干燥方式,其中喷雾干燥为最合适的CNC干燥技术,其操作成本低,得到的产品尺寸及尺寸分布良好,对于推广CNC在复合材料中的应用具有重要意义。硫酸水解法残液中含有大量的硫酸、一些未充分水解的纤维素以及反应生成的单糖、寡聚糖,通过向其中加入80%硫酸来调节残液中的硫酸浓度,再通过水浴加热将未充分水解的物质转化为葡萄糖,然后用阴离子交换膜将水解残液中的硫酸和葡萄糖分离,可回收硫酸并得到葡萄糖副产品[20]。
除硫酸外,盐酸[21]、氢溴酸[22]、磷酸[23]等无机酸也可用于制备CNC。盐酸(酸离解常数pKa =-8.0)酸性较强,其典型的水解条件为:浓度2.5~4.0 mol/L,回流温度、时间根据原料的不同而变化[24]。Kontturi等人25]采用盐酸蒸汽水解棉纤维制备得到长度为100~300 nm、宽度为7~8 nm的CNC,得率97.4%,此方法降解速度快、产量高、耗水量小,但成本高。氢溴酸(pKa = -9.0)作水解试剂时,反应条件一般为:酸浓度1.5~4.0 mol/L,反应温度80~100℃,反应时间1~4 h,长度分布于100~200 nm,得率可达70%[26]。磷酸属于中强酸(pKa = 2.12),水解时磷酸浓度(10~12 mol/L)较盐酸、氢溴酸偏高,在回流温度下处理纤维素原料1.3~3 h,可得到分散性较好的稳定CNC悬浮液[27]。 1.2 無机酸水解法影响因素
影响无机酸水解法制备CNC的因素包括:纤维原料、酸与纤维素原料比例、酸的种类、酸的浓度、反应温度、反应时间以及辅助手段等。
自1952年CNC被首次报道以来,利用木材、麻类、棉纤维、棉短绒、稻草、麦秸、细菌纤维、动物纤维等[28]多种原料都成功制备出了CNC。据报道[29-31],与被囊动物和细菌纤维素相比,木浆、棉花和麻类等原料制备的CNC尺寸相对较小;相同的反应时间、反应温度和酸对纸浆比例,针叶木(黑云杉)和阔叶木(桉树)制备的CNC悬浮液具有相似的尺寸、表面电荷。其他条件相同,结晶度不同的原料水解得到的CNC性质不同:对于结晶度较低的原料,其无定形区比例大,由于无定形区对酸的抵抗作用弱,制备出的CNC尺寸相对较小,尺寸分
龙源期刊网 http://www.qikan.com.cn
布也较窄[32]。Elazzouzi-Hafraoui等人[33]采用硫酸分别水解棉纤维、Avicel微晶纤维和被囊纤维,研究发现,纤维素原料决定了CNC的尺寸及分布、形貌。棉纤维制备的CNC为棒状,长度为25~320 nm,宽度为6~70 nm;Avicel纤维得到的也是棒状CNC,长度与棉纤维所得CNC相当接近(35~265 nm),但其宽度却只有棉纤维的1/2左右(3~48 nm);而被囊纤维制得的CNC有一部分呈扭曲状,平均长度也较其他两类纤维大,达1073 nm,平均宽度和厚度分别为28 nm和9.2 nm。
酸与纤维素原料比例和反应时间这两个因素对CNC的尺寸影响显著。随着反应时间的增加,纤维素水解更彻底,CNC形貌由棒状变为球状颗粒[38]。Dong等人[39]采用硫酸水解滤纸粉(98%棉纤维)研究了水解时间对CNC性能的影响。水解时间从10 min增加到240 min,CNC的总硫含量和表面电荷增加,粒径减小。水解初期粒径迅速下降,后期逐渐减缓,在反应1 h后,CNC尺寸变得相对稳定。这是因为在水解初期,酸优先攻击纤维素的无定形区,使其糖苷键快速断裂;当纤维素中这些更容易水解的糖苷键被破坏后,少量不完整的结晶区也会发生水解,CNC尺寸继续下降但速度变缓[40]。Beck-Candanedo等人[31]采用硫酸水解漂白亚硫酸盐针叶木浆,研究了酸与纤维素原料比例和反应时间对CNC制备的影响。结果发现,随着水解时间的增加、酸对纤维的比例增大,CNC尺寸及多分散性逐渐减小。当反应时间为45 min时,将酸对纤维素原料比例提高1倍,CNC尺寸降低约12.5%。但若酸与纤维素原料的比例过大,会导致原料发生碳化,影响产物的得率与性质。
酸浓度是制备CNC的最主要因素,对CNC的制备工艺和产品尺寸、形貌影响显著。酸水解反应一般都需要在高浓酸的条件下进行,在此基础上增加酸的浓度,CNC的尺寸相应减小,这是因为随着酸浓度的增大,纤维素与酸充分接触后水解的更彻底[17]。陈理恒[41]研究发现,通过改变浓硫酸浓度可CNC的尺寸及形貌,高浓度(%)条件下,低温即可较快制备CNC,结晶度随得率的降低而增加;低浓度(58%)条件下,所得的产物更像纤维素纳米纤丝(CNF),且产物结晶度几乎不随得率变化。酸浓度与反应时间之间具有明显的相关性,酸浓度增加时,反应时间减少[42]。这是由于当酸浓度变化时,随浓度的升高反应会更剧烈,纤维素水解增强,反应时间缩短。但当酸浓度增大到一定值时,纤维素主要降解为葡萄糖,导致CNC得率下降。
反应温度是制备CNC的另一关键影响因素。Elazzouzi-Hafraoui等人[33]以65%硫酸在45~72℃条件下水解棉纤维0.5 h,研究不同反应温度对CNC粒径的影响。结果发现,温度升高,CNC长度会减小,但是宽度下降并不明显。Martins等人[43]发现反应温度升高,硫酸水解棉纤维制备的CNC热稳定性降低。这是因为随着温度的提高,除了无定形区被破坏外,部分存在缺陷的结晶区也会发生水解,导致CNC热稳性有所降低。温度与反应时间之间也存在一定的相互影响。65%左右硫酸水解纤维素原料,通常反应温度控制在室温到70℃之间,相应的反应时间在0.5~12 h [24
,37,43]
。
超声波处理作为一种有效的辅助手段已开始用于CNC的制备。Guo等人[44]通过采用%硫酸水解亚硫酸盐针叶木浆,研究了酸水解过程中超声波处理对CNC粒径大小的影响。研究发现,在相同的水解周期内,经超声波处理制备的CNC平均长度总是小于未经超声波处理制
龙源期刊网 http://www.qikan.com.cn
备的CNC平均长度。在CNC制备过程中引入超声波也能提高得率[26],这是因为超声过程中,超声波会产生强烈空化作用,空化泡破裂产生的强烈冲击波等作用将纤维素进一步破碎[45-46];但超声时间太长,CNC的结晶结构会受到一定程度的破坏,得率会有所下降。合理运用超声手段还对无机酸水解法制备球形CNC起着非常重要的作用。如在超声辅助的情况下,MCC在%的硫酸体系中45℃条件下反应2 h,可制得粒径为30~40 nm的球形纤维素纳米晶体[47]。Zhang等人[48]研究发现微晶纤维素在浓盐酸(12 mol/L)∶浓硫酸(36 mol/L)∶水=1∶3∶6体系中在80℃条件下辅以超声波,反应8 h可制得粒径为(560±100)nm的球形纤维素纳米晶体。
无机酸水解法具有反应速度快、工艺简单且相对成熟等优点,目前在北美、欧洲和日本发展很快,已到中试、工业示范阶段,甚至正在筹建工业生产线,国内外利用无机酸水解法制备CNC的产业情况如表2所示[49]。但由于存在强腐蚀和废酸难处理问题,无机酸水解法面临生产成本问题和使用浓强酸带来的设备挑战,不得不寻找一种反应条件温和、低污染、环境友好的制备方法。 2 有机酸水解法
近年来,有机酸水解法制备纤维素纳米晶体的研究开始受到重视,已开发的有机酸有甲酸、草酸、马来酸和对甲苯磺酸等。甲酸是一种低沸点有机酸,腐蚀性低,可通过蒸馏方式回收。Li等人[50]采用98%的甲酸水解漂白桦木浆,成功制备出了CNC,再经TEMPO进一步氧化后可使CNC具有良好的水分散性,这是由于TEMPO改性后CNC表面电荷增多,改善了其在水中的分散性。引入氯化铁作为催化剂可提高甲酸水解反应活性(反应条件为:88%甲酸,0.015 mmol/g氯化铁,95℃,6 h),并能够制备出热稳定性优良、得率高的棒状CNC。该方法使得CNC表面修饰上甲酸酯基,使CNC具有一定的疏水性,可以良好分散在二甲基亚砜(DMSO)、二甲基乙酰胺(DMAC)、二甲基甲酰胺(DMF)等有机溶剂中[51-52];但因表面电荷较少,该方法制得的CNC在水中容易聚集[53],因此其在水相中的许多应用受限。 与甲酸相比,草酸水解法制备的CNC具有良好的分散稳定性,主要是由于草酸为二羧酸,水解反应过程中通过草酸与纤维素原料表面羟基的单酯化反应,从而在最终制备的CNC表面引入大量的羧基,使得CNC带有较大量的负电荷。然而,草酸水解反应的活性较低。Chen等人[]利用高浓度草酸(70%)在100℃条件下反应1 h,仅能将少部分木浆水解为棒状CNC,最高得率25%。Li等人[55]通过优化草酸水解反应条件,利用熔融的二水草酸处理木浆,制得草酸酯化的木浆,然后通过超声处理得到得率为80.6%的CNC,该产物形貌为棒状且热稳定性良好。Xu等人[56]发现用草酸(0.11 mol/L)-盐酸(10%,体积分数)体系可制备出得率为81.5%棒状CNC(95℃,4 h),该体系中草酸的用量显著减少,但所得产物的尺寸偏大,达1056 nm,如尺寸减小到9 nm,需要延长反应时间到48 h。
Flison等人[57]分别采用去离子水和马来酸辅以超声水解MCC制备CNC。研究发现,去离子水体系可得到球形CNC,直径在(21±5)nm;马来酸体系得到的CNC为圆柱形,直径15 nm,长度范围为(65±19)nm。Bian等人[58]以60%马来酸在120℃时水解未漂阔叶木浆2 h,
龙源期刊网 http://www.qikan.com.cn
可得到木质素包裹的CNC,得率较低(仅为6%)。与草酸相同,马来酸(pKa = 1.9)水解活性较低,利用高浓度马来酸在高温下仅能将小部分的木浆转化为棒状CNC。有机酸中对甲苯磺酸的酸性虽然较强,但50%对甲苯磺酸在100℃条件下水解漂白桉木浆45 min,也仅有6%的棒状CNC生成,部分水解的残渣占86.6%[]。
草酸、马来酸、对甲苯磺酸在水中的溶解度随着温度的升高急剧增加,通过冷却重结晶易于回收。采用浓度为70%的草酸水解漂白桉木浆再经离心后的残液冷却至室温即可结晶析出95%的草酸,浓度80%的马来酸和90%的对甲基苯磺酸也有80%的酸回收率[41];水解残液中的还原糖也可回收加以利用,CNC制备流程及有機酸回收如图2所示[]。
与传统的无机酸水解法相比,有机酸水解法具有对设备腐蚀低、酸易回收等优点,所得产品分散稳定性好,极具开发前景。但目前有机酸水解法存在反应活性低的问题,需通过优选催化剂来提高草酸水解反应活性,实现高效可控制备不同形貌的CNC。 3 混合酸水解法
除了单独使用一种酸以外,不同的酸按一定比例制成的混合酸体系也可以用于制备CNC。1947年,Bondeson等人[42]用盐酸和硫酸水解木材和棉絮制备得到CNC胶体悬浮液,这是关于混合酸体系制备CNC最早的报道。Cheng等人[59]采用盐酸-混合酸体系通过一步水热法高效制备出了羧基化CNC。研究发现,混合酸与水热反应的结合可以加速制备CNC。当盐酸-的体积比为7∶3时,制备的CNC长径比最大,尺寸分布最窄,得率为72.6%;另外,由于羧基的存在,CNC具有较高的分散稳定性。
随着有机酸水解工艺的快速发展,无机强酸与有机弱酸结合而成的混合酸体系也尝试用于制备CNC。Liu等人[60]以糠醛渣纤维素为原料采用88%的甲酸,辅以少量盐酸,成功制备出了高热稳定性的CNC,其得率为66.3%,引入盐酸作为催化剂显著提高了甲酸的水解速率,反应仅需0.5 h。Xu等人[56]研究表明草酸与盐酸混合酸体系同样表现出较高的反应活性。陈理恒[41]以漂白桉木浆为原料,通过50%以上高浓度的草酸和马来酸混合酸在100~120℃条件下水解45 min成功制备出羧基化的CNC,证明了在适当的水解条件下,两种有机酸混合同样适用于CNC的制备。高浓度有机混合酸所得的CNC热降解温度高达322℃,远高于原料(274℃),且其结晶度也高达82%。由于所用酸为弱酸,只有部分纤维素原料会水解生成少量CNC,没有充分水解的纤维素可以通过高压均质的方法制备CNF。
越来越多的研究表明,在一定的条件下,纤维原料在混合酸体系中水解的效果可能会更好。当前不同酸的选择、混合酸比例以及混合酸体系对CNC结構和性能的作用机理及规律还有待进一步研究。 4 固体酸水解法
龙源期刊网 http://www.qikan.com.cn
在酸水解法制备CNC过程中,采用固体酸处理纤维素原料是一个新的方向。固体酸是近年发展起来的新型酸催化剂,绿色环保、易分离、可重复使用,可在许多场合代替无机酸[61]。Liu等人[62]采用75%的磷钨酸(Phosphotungstic acid,PTA)在90℃条件下,水解漂白阔叶木浆,制备了直径为15~40 nm的稳定CNC悬浮液。此法虽得率较高(约60%),但反应时间较长(约30 h)。Lu等人[63]通过采用机械活化与磷钨酸水解相结合找到了一种有效制备CNC的方法,流程如图3所示,反应中磷钨酸催化剂浓度为12.5%,在90℃条件下反应4.7 h,然后经过超声(20 kHz)0.5 h,可将得率提高到88.4%,结晶度为79.6%。该方法反应速率较快,产物热稳定性较高。Torlopov等人[]采用添加少量H2O2的磷钨酸-乙酸体系在110℃条件下水解MCC 3 h,CNC最高得率可达到72%,进一步提高了水解反应速率。卢燕凤等人[65]以炭基磷钨酸水解MCC制备了直径为9~70 nm,长度为130~830 nm的棒状CNC,结晶度为76.1%,但得率较低(25.28%)。与传统酸水解方法相比,磷钨酸水解法可省去脱酸过程,具有对设备腐蚀性小、环保等优点,可作为改进CNC制备方法的一个重要途径。
Tang等人[66-67]创新性的利用阳离子交换树脂成功制备出了CNC。以超声波辅助强酸性阳离子交换树脂催化水解MCC制得了近球形的CNC,直径为20~40 nm,结晶度由原料的72.25%增加到84.26%,得率最高可达50.04%。将阳离子交换树脂回收再重复使用3次,产物得率仍能达48.00%。该方法与无机强酸水解法相比,强酸性阳离子交换树脂具有较高的催化活性和稳定性,且操作简单,反应程度较易控制,对环境污染较小,有望成为一种高效、绿色的CNC制备方法。
固体酸也被尝试作为催化剂辅助其他酸水解制备CNC。庄森炀等人[68]用磷酸锆辅助12.27%稀硫酸水解菌糠制备了棒状CNC,直径10~30 nm,得率为42.80%,结晶度由63.79%增加到81.04%。磷酸锆是一种固体酸催化剂,将磺酸根插层到磷酸锆层间,可增加磷酸锆表面的可接触酸的含量[69-70],提高其催化性能,反应所需硫酸浓度大大降低,水解过程更加高效、环保绿色。
5 金属盐催化酸水解法
近年来,纤维素水解过程中加入金属盐作为催化剂的研究广受关注。任玲兵等人[71]研究表明,H+和Fe3+共同作用能显著降低纤维素水解的活化能;颜涌捷等人[72]证明了氯化亚铁、氯化铁与盐酸共用对木屑在稀酸中的水解过程有很好的催化效果;伯永科等人[73]的研究也表明Cr3+、Fe2+、Cu2+、Zn2+均能催化稀酸水解秸秆纤维素。这些都启发研究人员在酸水解法制备CNC时添加一定的金属盐作为催化剂来优化反应条件。
Cheng等人[21]在水热条件下,利用金属氯化物催化盐酸水解MCC的方法来制备CNC。与纯盐酸水解时相比,添加MnCl2、CuCl2、AlCl3作为催化剂后,CNC平均长度由(256±30)nm分别降低到(222±33)nm、(206±16)nm、(178±34)nm,平均宽度也由(23±5)nm分别降至(19±4)nm、(17±7)nm、(14±3)nm。李金玲等人[74]以 %硫酸水解脱脂棉,确定了硫酸铜催化效果最好时的反应条件:m硫酸铜/m纤维素;= 1%,温度50℃,时间2 h,超声20 min。此法不仅缩短了反应时间,提高了反应效率,而且CNC的得率(58%)明显高于传统的
龙源期刊网 http://www.qikan.com.cn
硫酸水解法,形貌和尺寸分布也有所改善。通过引入金属离子来提高纤维素原料水解反应活性制备CNC在甲酸水解反应体系[53]中也得到了印证。可见,在酸水解木质纤维原料制备CNC的过程中,金属盐离子可以提高酸水解反应活性[75-76]。
在酸水解体系中引入金属盐催化剂也会对生成的CNC形貌产生影响。如在硫酸水解脱脂棉的过程中加入硫酸铜,生成棒状CNC,且CNC粒径先随着硫酸铜用量的增加而减小,达到某一定值后,粒径随硫酸铜用量的增加而增大。当加入氯化铁时,可得长径比为1.0~1.5的球状CNC[77]。其原因可能是Fe3+具有较高的电荷,导致纤维素降解程度较高,从而生成球状晶体。另外,与纯盐酸水解法相比,金属氯化物催化水解可获得更小粒径和更大长径比的CNC[21]。
在不添加任何质子酸的条件下,仅使用金属盐也可以制备CNC,但通常产率较低。如Lu等人[78]在不添加任何酸的条件下,采用超声辅助氯化铁水解竹浆原料成功制备了长度为100~200 nm,宽度为10~20 nm的棒状CNC。该法制备的CNC具有较高的热稳定性,但是在水中或其他溶剂中的分散性较差。而氯化铁催化水解纸浆(反应温度110℃,反应时间1 h,氯化铁质量分数10%),輔以超声时间3 h,可得到在水溶液中具有良好分散稳定性的棒状CNC,直径为20~50 nm,长度为200~300 nm,但最高得率仅为22%[79]。
金属氯化物催化酸水解MCC形成CNC的可能机理如图4所示[21]。带有正电荷的高价金属离子具有较强吸电子对的能力,氯离子则对缺电子的H具有一定的结合能力,因此,金属氯化物的引入可以破坏纤维素无定形区的分子内氢键和分子间氢键,从而加速酸向MCC内部结构的渗透,加快纤维素无定形区的降解。可见,金属离子能有效提高纤维素水解制备CNC的反应效率,尤其是对于反应活性较低的有机酸水解法,选择合适的金属盐作为催化剂有助于提高其反应活性,解决其存在的不足。 6 结 语
纤维素纳米晶体(CNC)作为一种可再生的纳米材料,具有优越的物理和化学性能,已成为一种在多个领域都有广泛应用前景的新兴生物质基功能材料。如利用CNC的液晶性能,可制备出抗张强度和热稳定性较高、光学性能良好的纤维素纳米晶体体虹彩膜,应用于光学传感器、光学防伪等领域。然而,目前制备CNC的主要方法仍然是酸水解法,近年新开发的有机酸水解法、固体酸水解法等与传统无机酸水解法相比,在提高CNC得率、提升产品性能、回收酸液、延缓对设备腐蚀等方面取得了很大进步,但仍需在降低成本、降低能耗、回收利用等方面继续改进。金属离子能有效催化纤维素原料的酸水解反应过程,提高纤维素水解效率。开发金属盐催化剂是酸水解法制备CNC未来发展的一个重要方向,尤其是对反应活性较低的有机酸水解法,选择合适的金属盐作为催化剂可提高其反应活性,解决其存在的不足,这对CNC的高效可控制备、规模化生产及拓展应用具有重要意义。未来一段时间仍需对反应条件温和、绿色高效、可持续的CNC制备工艺及基础理论进行研究开发。 参考文献
龙源期刊网 http://www.qikan.com.cn
[1];Sticklen M B. Plant genetic engineering for biofuel production:;towards affordable cellulosic ethanol[J]. Nature Reviews Genetics,;2008,;9(6):;433.
[2];Pei J C. Plant fiber chemistry[M]. Beijing:;China Light Industry Press,;2012. 裴继诚. 植物纤维化学[M]. 北京:;中国轻工业出版社,;2012.
[3];Mao H Q,;Gong Y Y,;Liu Y L,;et al.;Progress in Nanocellulose Prepration and Application[J].Paper and Biorraterials,;2017,;;;;;;;;;2(4):;65.
[4];Habibi Y,;Lucia L A,;Rojas O J. Cellulose nanocrystals:;chemistry,;self-assembly,;and applications[J]. Chemical Reviews,;2010,;110(6):;3479.
[5];Song J K,;Tang A M,;Liu T T,;et al. Fast and continuous preparation of high polymerization degree cellulose nanofibrils and their three-dimensional macroporous scaffold fabrication[J]. Nanoscale,;2013,;5(6):;2482.
[6];Grishkewich N,;Mohammed N,;Tang J,;et al. Recent advances in the application of cellulose nanocrystals[J]. Current Opinion in Colloid & Interface Science,;2017,;29:;32. [7];Golmohammadi H,;Morales-Narváez E,;Naghdi T,;et al. Nanocellulose in Sensing and Biosensing[J]. Chemistry of Materials,;2017,;29(13):;26.
[8];ZHANG Sihang,;FU Runfang,;DONG Liqin,;et al. Progress in Preparation of Nanocellulose and Its Application in Composites[J]. China Pulp & Paper,;2017,;36 (1):;67. 张思航,;付润芳,;董立琴,;等. 纳米纤维素的制备及其复合材料的应用研究进展[J]. 中国造纸,;2017,;36(1):;67.
[9];DONG Fengxia,;LIU Wen,;LIU Hongfeng. Preparation and Application of Nano-Cellulose[J]. China Pulp & Paper,;2012,;31 (6):;68.
董鳳霞,;刘;文,;刘红峰. 纳米纤维素的制备及应用[J]. 中国造纸,;2012,;31(6):;68. [10];Wang Shuai,;Liu Pengtao,;Hou Jialing. Preparation of Cellulose Nanocrystalline Iris[J]. Transactions of China Pulp and Paper,;2017,;32(4):;22.
王;帅,;刘鹏涛,;侯佳玲. 纤维素纳米晶体虹彩膜的制备[J]. 中国造纸学报,;2017,;32(4):;22.
龙源期刊网 http://www.qikan.com.cn
[11];Moon R J,;Martini A,;Nairn J,;et al. Cellulose nanomaterials
review:;structure,;properties and nanocomposites[J]. Chemical Society Reviews,;2011,;40(7):;3941.
[12];Hamad W. Cellulose Nanocrystals:;Properties,;Production,;and Applications[M]. John Wiley & Sons Ltd Publishing,;2017.
[13];Novo L,;Bras J,;Garcia A,;et al. Subcritical Water:;A Method for Green Production of Cellulose Nanocrystals[J]. ACS Sustainable Chemistry Engineering,;2015,;3(11):;2839. [14];Nelson K,;Retsina T,;Iakovlev M,;et al. American Process:;Production of Low Cost Nanocellulose for Renewable,;Advanced Materials Applications[J]. Material Research for Manufacturing,;2016,;224:;267.
[15];Ranby B G. Potential of agricultural residues and hay for bioethanol production[J]. Applied Biochemistry and Biotechnology,;1992,;11(21):;158.
[16];Moradbak A,;Tahir P M,;Mohamed A Z,;et al. Isolation of cellulose nanocrystals from Gigantochloa scortechinii ASAM pulp[J]. European Journal of Wood and Wood Products,;2018,;76:;1021.
[17];Wang S,;Gao G Z,;Liu D G. Preparation and characterization of cellulose nanocrystals[J]. Guangzhou Chemical Industry,;2014,;42(10):;63.
王;硕,;高桂枝,;刘大刚. 纤维素纳米晶备和表征实验条件研究[J]. 广州化工,;2014,;42(10):;63.
[18];Gardner D J,;Oporto G S,;Mills R,;et al. Adhesion and surface issues in cellulose and nanocellulose[J]. Journal of Adhesion Science and Technology,;2008,;22:;5.
[19];Peng Y C,;Gardner D J,;Yousoo H. Drying cellulose nanofibrils:;In search of a suitable method[J]. Cellulose,;2012,;19(1):;91.
[20];WANG Shuai,;LIU Pengtao,;HOU Jialing. Preparation of hydrolytic residue of cellulose nanocrystalline by acid hydrolysis method[J]. Chinese Journal of Papermaking,;2017,;32(3):;27.
王;帥,;刘鹏涛,;侯佳玲. 酸解法制备纤维素纳米晶体水解残液的糖酸分离[J]. 中国造纸学报,;2017,;32(3):;27.
龙源期刊网 http://www.qikan.com.cn
[21];Cheng M,;Qin Z,;Chen Y,;et al. Efficient extraction of cellulose nanocrystals through hydrochloric acid hydrolysis catalyzed by inorganic chlorides under hydrothermal conditions[J]. ACS Sustainable Chemistry & Engineering,;2017,;5(6):;4656.
[22];Sucaldito M R,;Camacho D H. Characteristics of unique HBr-hydrolyzed cellulose nanocrystals from freshwater green algae (Cladophora rupestris);and its reinforcement in starch-based film[J]. Carbohydrate Polymers,;2017,;169:;315.
[23];Lu Q,;Lin W,;Tang L,;et al. A mechanochemical approach to manufacturing bamboo cellulose nanocrystals[J]. Journal of Materials Science,;2015,;50(2):;611.
[24];Martínez-Sanz M,;Lopez-Rubio A,;Lagaron J M. Optimization of the nanofabrieation by acid hydrolysis of bacterial cellulose nanowhiskers[J]. Carbohydrate Polymers,;2011,;85(1):;228.
[25];Kontturi E,;Meriluoto A,;Penttil P A,;et al. Degradation and crystallization of cellulose in hydrogen chloride vapor for high-yield isolation of cellulose nanocrystals[J]. Angewandte Chemie,;2016,;55(46):;14455.
[26];Sadeghifar H,;Filpponen I,;Clarke S P,;et al. Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface[J]. Journal of Materials Science,;2011,;46(22):;7344.
[27];Espinosa S C,;Kuhnt T,;Foster E J,;et al. Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis[J]. Biomacromolecules,;2013,;14(4):;1223. [28];Klemm D,;Kramer F,;Moritz S,;et al. Nanocelluloses:;A new family of nature-based materials [J]. Angewandte Chemie International Edition,;2011,;50(24):;3.
[29];Heux L,;Chauve G,;Bonini C. Nonflocculating and Chiral-Nematic Self-ordering of Cellulose Microcrystals Suspensions in Nonpolar Solvents[J]. Langmuir,;2000,;16:;8210. [30];Souza Lima D M M,;Wong J T,;Paillet M,;et al. Translational and Rotational Dynamics of Rodlike Cellulose Whiskers[J]. Langmuir,;2003,;19:;24.
[31];Beck-Candanedo S,;Roman M,;Gray D G. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspension[J]. Biomacromolecules,;2005,;6(2):;1048.
龙源期刊网 http://www.qikan.com.cn
[32];Li Y Y,;Dai H Q. Progress in preparation of nanocrystalline cellulose by chemical method[J]. Journal of Nanjing Forestry University (Natural Science Edition),;2012,;36 (5):;161.
李媛媛,;戴红旗. 化学法制备纳米微晶纤维素的研究进展[J]. 南京林业大学学报(自然科学版),;2012,;36(5):;161.
[33];Elazzouzi-Hafraoui S,;Nishiyama Y,;Putaux J L,;et al. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose[J]. Biomacromolecules,;2008,;9(1):;57.
[34];Jiang F,;Esker A R,;Roman M. Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals[J]. Langmuir the Acs Journal of Surfaces & Colloids,;2010,;26(23):;17919.
[35];Roman M,;Winter W T. Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behavior of Bacterial Cellulose[J]. Biomacromolecules,;2004,;5:;1671. [36];Yu H Y,;Qin Z Y,;Liang B L,;et al. Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions[J]. Journal of Materials Chemistry A,;2013,;1(12):;3938.
[37];Araki J,;Wada M,;Kuga S,;et al. Flow properties of micmcrystal 1ine cellulose suspension prepared by acid treatment of native cellulose[J]. Colloids and Surfaces A:;Physicochemical and Engineering Aspects,;1998,;142(1):;75.
[38];Li Y F,;Bai H Y,;Wang W,;et al. Preparation and Properties of Nanocrystalline Cellulose with different forms[J]. Cellulose Science and Technology,;2015,;23 (4):;9. 李育飛,;白绘宇,;王;玮,;等. 不同形态的纳米晶纤维素的制备及其性能研究[J]. 纤维素科学与技术,;2015,;23(4):;9.
[39];Dong X M,;Revol J F,;Gray D G. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose[J]. Cellulose,;1998,;5:;19.
[40];Millet M A,;Moore W E,;Saeman J F. Preparation and properties of hydrocelluloses[J]. Industrial Engineering Chemistry Research,;19,;46:;1493.
[41];Chen L H. Studies on enzymatic hydrolysis of lignocellulosic and properties of nano-cellulose based on acid treatment[D]. Guangzhou:;South China University of Technology,;2016.
龙源期刊网 http://www.qikan.com.cn
陳理恒. 基于酸处理的木质纤维酶水解及纳米纤维素特性的研究[D]. 广州:;华南理工大学,;2016.
[42];Bondeson D,;Mathew A,;Oksman K. Optimization of the isolation of naocrystals from microcrystalline cellulose by acid hydrolysis[J]. Cellulose,;2006,;13(2):;171.
[43];Martins M A,;Teixeira E M. Extraction and characterization of cellulose whiskers from commercial cotton fibers[J]. Journal of Materials Science,;2011,;46:;7858.
[44];Guo J,;Guo X,;Wang S,;et a1. Effects of ultrasonic treatment during acid hydrolysis on the yield,;particle size and structure of cellulose nanocrystals[J]. Carbohydrate Polymers,;2016,;135:;248.
[45];Xie W,;Li R. Exploration of mechanism of ultrasound used in chemical industry[J]. Liaoning Chemical Industry,;2010,;39(10):;1044.
[46];Lu Y,;Sun Q F,;Li Jian. Preparation and characterization of nanofiber films and foams based on ultrasonic nanofibrillated cellulose from wood[J]. Science & Technology Review,;2013,;31(15):;17.
[47];Zianor-Azrina Z A,;Beg M D H,;Rosli M Y,;et a1. Spherical nanocrystalline cellulose (NCC);from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis[J]. Carbohydrate Polymers,;2017,;162:;115.
[48];Zhang J,;Elder T J,;Pu Y,;et a1. Facile synthesis of spherical cellulose nanoparticles[J]. Carbohydrate Polymers,;2007,;69(3):;607.
[49];Miller J. Cellulose nanomaterials production-state of the industry,;December,;2015. [2017-07]. http//www. tappinano. org/media/1114/cellulose-nanomaterials-production-state-of-the-industry-dec-2015. pdf.
[50];Li B,;Xu W Y,;Kronlund D,;et a1. Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation[J]. Carbohydrate Polymers,;2015,;133:;605. [51];Du H S,;Liu C,;Zhang Y D,;et a1. Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization[J]. Industrial Crops and Products,;2016,;94:;736.
[52];Wang Q B,;Du H S,;Zhang F,;et a1. Flexible cellulose nanopaper with high wet tensile strength,;high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk via a sustainable method[J]. Journal of Materials Chemistry A,;2018,;6:;13021.
龙源期刊网 http://www.qikan.com.cn
[53];Du H S,;Liu C,;Mu X,;et a1. Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis[J]. Cellulose,;2016,;23(4):;23.
[];Chen L,;Zhu J Y,;Baez C,;et a1. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids[J]. Green Chemistry,;2016,;18(13):;3835.
[55];Li D,;Henschen J,;Ek M. Esterification and hydrolysis of cellulose using oxalic acid dihydrate in a solvent-free reaction suitable for preparation of surface-functionalised cellulose nanocrystals with high yield[J]. Green Chemistry,;2017,;19(23):;55.
[56];Xu W,;Grénman H,;Liu J,;et a1. Mild oxalic acid-catalyzed hydrolysis as a novel approach to prepare cellulose nanocrystals[J]. Chem. Nano. Mat.,;2017,;3(2):;109. [57];Filson P B,;Dawson-Andoh B E. Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials[J]. Bioresource Technology,;2009,;100 (7):;2259. [58];Bian H Y,;Chen L H,;Dai H Q,;et a1. Integrated production of lignin containing cellulose nanocrystals (LCNC);and nanofibrils (LCNF);using an easily recyclable di-carboxylic acid[J]. Carbohydrate Polymers,;2017,;167:;167.
[59];Cheng M,;Qin Z,;Chen Y,;et al. Facile one-step extraction and oxidative carboxylation of cellulose nanocrystals through hydrothermal reaction by using mixed inorganic acids[J]. Cellulose,;2017,;24(8):;3243.
[60];Liu C,;Li B,;Du H S,;et a1. Properties of nanocellulose isolated from corncob residue using sulfuric acid,;formic acid,;oxidative and mechanical methods[J]. Carbohydrate Polymers,;2016,;151:;716.
[61];Huo W Z,;Gou L K,;Yu D M. Study on Pretreatment of Strong Acid Cationic Exchange Resin Catalyst[J]. Industrial Catalysis,;1999 (6):;13.
霍稳周;,;勾连科,;于镝明.;强酸型阳离子交换树脂催化剂预处理研究[J]. 工业催化,;1999 (6):;13.
[62];Liu Y F,;Wang H S,;Yu G,;et a1. A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid[J]. Carbohydrate Polymers,;2014,;110:;415.
龙源期刊网 http://www.qikan.com.cn
[63];Lu Q L,;Cai Z H,;Lin F C,;et a1. Extraction of Cellulose Nanocrystals with a High Yield of 88% by Simultaneous Mechanochemical Activation and Phosphotungstic Acid Hydrolysis[J]. ACS Sustainable Chemistry Engineering,;2016,;4(4):;2165.
[];Torlopov M A,;Udoratina E V,;Martakov I S,;et a1. Cellulose nanocrystals prepared in H3PW12O40-acetic acid system[J]. Cellulose,;2017,;24(5):;2153.
[65];Lu Y F,;Wu G F,;Zeng C W,;et al. In situ synthesis of carbonyl phosphotungstic acid and its catalytic activity[J]. Chemistry and Industry of Forest Products,;2015,;35 (4):;48. 卢燕凤,;吴耿烽,;曾常伟,;等. 原位合成炭基磷钨酸及其催化性能初探[J]. 林产化学与工业,;2015,;35(4):;48.
[66];Tang L R. Preparation,;characterization and application of nano-cellulose crystals[D]. Fuzhou:;Fujian Agriculture and Forestry University,;2010.
唐丽荣. 纳米纤维素晶体的制备、表征及应用研究[D]. 福州:;福建农林大学,;2010. [67];Tang L R,;Huang B,;Ou W,;et al. Mamffacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose[J]. Bioresource Technology,;2011,;102(23):;10973.
[68];Zhuang S Y,;Tang L R,;Lu Q L,;et al. Preparation of Nanocellulose Crystals by Zirconium Phosphate Assisted Catalytic Hydrolysis of Bacterial Bran[J]. Progress in Chemical Engineering,;2016,;35 (3):;866.
庄森炀,;唐丽荣,;卢麒麟,;等. 磷酸锆辅助催化水解菌糠制备納米纤维素晶体的性能[J]. 化工进展,;2016,;35(3):;866.
[69];Li Y,;Liu K,;Hua W M,;et al. Preparation and Catalytic Application of Laminated Zirconium Phosphate Modified with Benzene Sulfonic Acid[J]. Journal of Chemistry of Colleges and Universities,;2011,;32 (3):;731.
李;颖,;刘;可,;华伟明,;等. 苯磺酸修饰的层柱磷酸锆的制备及催化应用[J]. 高等学校化学学报,;2011,;32(3):;731.
[70];Lu Q L. Studies on Preparation of Nanocellulose from Giant Grass[D]. Fuzhou:;Fujian Agriculture and Forestry University,;2013.
卢麒麟. 巨菌草制备纳米纤维素的研究[D]. 福州:;福建农林大学,;2013.
龙源期刊网 http://www.qikan.com.cn
[71];Ren L B,;Cao Q,;Xie X L. Hydrolysis kinetics of microcrystalline cellulose catalyzed by Fe3+;and dilute hydrochloric acid[J]. Chemical and Industrial Forest Products,;2012,;32(4):;117.
任玲兵,;曹;青,;解小玲. 微晶纤维素在Fe3+和稀盐酸联合催化下的水解动力学研究[J]. 林产化学与工业,;2012,;32(4):;117.
[72];Yan Y J,;Ren Z W. Study on continuous Catalytic Hydrolysis of Cellulose[J]. Solar Energy News,;1999(1):;56.
颜涌捷,;任铮伟. 纤维素连续催化水解研究[J]. 太阳能报,;1999(1):;56.
[73];Bo Y K,;Cui H X,;Liu Q,;et al. Study on Dilute Acid Hydrolysis of Straw Cellulose based on Metallic Salt Cocatalyst[J]. China Agricultural Science Bulletin,;2008(9):;435. 伯永科,;崔海信,;刘;琪,;等. 基于金属盐助催化剂的秸秆纤维素稀酸水解研究[J]. 中国;农学通报,;2008(9):;435.
[74];Li J L,;Zhou L J,;Ye D Y. Preparation of Nano-Cellulose Whiskers Catalyzed by Copper Sulfate[J]. Fine Chemical Industry,;2009,;26 (9):;844.
李金玲,;周刘佳,;叶代勇. 硫酸铜助催化制备纳米纤维素晶须[J]. 精细化工,;2009,;26(9):;844.
[75];Li J,;Xiu H,;Zhang M,;et al. Enhancement of Cellulose Acid Hydrolysis Selectivity Using Metal Ion Catalysts [J]. Current Organic Chemistry,;2013,;17(15):;1617. [76];Li J,;Qiang D,;Zhang M,;et al. Joint action of ultrasonic and Fe3+;to improve selectivity of acid hydrolysis for microcrystalline cellulose[J]. Carbohydrate Polymers,;2015,;129:;44.
[77];Li J L. Preparation of Nano-cellulose whiskers and their reinforcement of waterborne polyurethane by CuSO4;assisted catalytic synthesis[D]. Guangzhou:;South China University of Technology,;2010.
李金玲. 硫酸铜助催化制备纳米纤维素晶须及其增强水性聚氨酯[D]. 广州:;华南理工大学,;2010.
[78];Lu Q,;Tang L,;Lin F,;et al. Preparation and characterization of cellulose nanocrystals via ultrasonication-assisted FeCl3-catalyzed hydrolysis[J]. Cellulose,;2014,;21(5):;3497.
龙源期刊网 http://www.qikan.com.cn
[79];Lu Q L,;Tang L R,;You H J,;et al. Preparation of Nanocellulose by Green and High Efficiency Catalytic system of Ferric Chloride[J]. Science and Technology Predictions,;2014,;32 (z1):;56.
盧麒麟,;唐丽荣,;游惠娟,;等. 氯化铁体系绿色高效催化制备纳米纤维素[J]. 科技导报,;2014,;32(z1):;56. (责任编辑:董凤霞)
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuoyibo.net 版权所有 湘ICP备2023021910号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务