您好,欢迎来到图艺博知识网。
搜索
您的当前位置:首页知道三角形三个点的坐标如何计算面积

知道三角形三个点的坐标如何计算面积

来源:图艺博知识网


可以使用以娇子如杀子下公式计算以眼还眼三角形面积居高声自远:S = 佳偶自天成1/2 *浓重 |(x1兴奋专注y2 + 俏丽x2y3 斜眼+ x3y耳垂1) - 爱心春意(x1y3赞许 + x2俏丽俊目y1 + 二一添作五后来者居上x3y2)称赞|。 具体峰回路转步骤如下:陡峭首先计算出病急乱求医三边的长度以少胜多,然后计算强健出半周长s指挥若定通宵达旦=(a+b礼轻情意重+c)/2明日黄花,最后代入希望海式S有气无力=√[s(专注s-a)(指挥若定通宵达旦s-b)(丽质s-c)]吞吞吐吐中即可得到肥大三角形面积行行重行行。 另外,埋头苦干也可以使用顾头不顾脚另一种公式消瘦S=(x1不阴不阳y2-x1春装y3+x2安详y3-x2秀丽匀称y1+x3换汤不换药病去如抽丝y1-x2迷人y2)/2初出茅庐支支吾吾来计算三角刚健星眸形面积。内容来自懂视网(www.51dongshi.com),请勿采集!

小编还为您整理了以下内容,可能对您也有帮助:

三个点坐标怎么求三角形面积

通过三个点的坐标求出三角形面积的公式
当三个点A、B、C的坐标分别为A(x1,y1)、B(x2,y2)、C(x3、y3)时,三角形面积为,
S=(x1y2-x1y3+x2y3-x2y1+x3y1-x2y2)。
解:设三个点A、B、C的坐标分别为A(x1,y1)、B(x2,y2)、C(x3、y3)。
那么A、B、C三点可围成一个三角形。
AC与AB边的夹角为∠A。
那么向量AB=(x2-x1,y2-y1)、向量AC=(x3-x1,y3-y1)。
令向量AB=a,向量AC=b,
则根据向量运算法则可得,
|a·b|=|a|·|b|·|cosA|,
那么cosA=|a·b|/(|a|·|b|),则sinA=√((|a|·|b|)^2-(|a·b|)^2)/(|a|·|b|)。
那么三角形的面积S=|a|·|b|·sinA=√((|a|·|b|)^2-(|a·b|)^2)
又a·b=(x2-x1)*(x3-x1)+(y2-y1)*(y3-y1),
那么可得三角形的面积S=(x1y2-x1y3+x2y3-x2y1+x3y1-x2y2)。

扩展资料:
1、向量的运算
对于向量a=(x1,y1),b=(x2,y2),c(x3,y3)则向量的运算法则如下。
(1)数量积
对于向量a=(x1,y1),b=(x2,y2),且a,b之间的夹角为A,那么
a·b=b·a、(λa)·b=λ(a·b)、(a+b)·c=a·c+b·c。
a·b=|a|·|b|·cosA,
(2)向量的加法
a+b=b+a、(a+b)+c=a+(b+c)
(3)向量的减法
a+(-b)=a-b
2、正弦定理应用
在任意△ABC中,角A、B、C所对的边长分别为a、b、c,
那么a/sinA=b/sinB=c/sinC。
且三角形面积S=1/2absinC=1/2acsinB=1/2bcsinA。
参考资料来源:百度百科-向量
参考资料来源:百度百科-正弦定理

三个点坐标怎么求三角形面积

通过三个点的坐标求出三角形面积的公式
当三个点A、B、C的坐标分别为A(x1,y1)、B(x2,y2)、C(x3、y3)时,三角形面积为,
S=(x1y2-x1y3+x2y3-x2y1+x3y1-x2y2)。
解:设三个点A、B、C的坐标分别为A(x1,y1)、B(x2,y2)、C(x3、y3)。
那么A、B、C三点可围成一个三角形。
AC与AB边的夹角为∠A。
那么向量AB=(x2-x1,y2-y1)、向量AC=(x3-x1,y3-y1)。
令向量AB=a,向量AC=b,
则根据向量运算法则可得,
|a·b|=|a|·|b|·|cosA|,
那么cosA=|a·b|/(|a|·|b|),则sinA=√((|a|·|b|)^2-(|a·b|)^2)/(|a|·|b|)。
那么三角形的面积S=|a|·|b|·sinA=√((|a|·|b|)^2-(|a·b|)^2)
又a·b=(x2-x1)*(x3-x1)+(y2-y1)*(y3-y1),
那么可得三角形的面积S=(x1y2-x1y3+x2y3-x2y1+x3y1-x2y2)。

扩展资料:
1、向量的运算
对于向量a=(x1,y1),b=(x2,y2),c(x3,y3)则向量的运算法则如下。
(1)数量积
对于向量a=(x1,y1),b=(x2,y2),且a,b之间的夹角为A,那么
a·b=b·a、(λa)·b=λ(a·b)、(a+b)·c=a·c+b·c。
a·b=|a|·|b|·cosA,
(2)向量的加法
a+b=b+a、(a+b)+c=a+(b+c)
(3)向量的减法
a+(-b)=a-b
2、正弦定理应用
在任意△ABC中,角A、B、C所对的边长分别为a、b、c,
那么a/sinA=b/sinB=c/sinC。
且三角形面积S=1/2absinC=1/2acsinB=1/2bcsinA。
参考资料来源:百度百科-向量
参考资料来源:百度百科-正弦定理

Copyright © 2019- huatuoyibo.net 版权所有

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务